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Abstract

The fretting fatigue performance of Ti-6Al1-4V after isothermal exposure was explored in test coupons in
low plasticity burnished (LPB), shot peened (SP) and electropolished (ELP) baseline conditions. In the current study,
fretting fatigue data and fractography are presented along with in-depth residual stress profiles, both before and after
the isothermal exposure. Surface roughness data for each of the three surface conditions are reported.

For the studied fretting configuration, it was found that both the shot peening and LPB process improved
the fretting fatigue performance over the baseline electropolished condition. In the LPB’d case the fretting damage
was largely ameliorated by the burnishing process.

Keywords: Fatigue, Fretting, Residual Stress, Surface Treatments, Shot Peening, Low Plasticity Burnishing
1. Introduction

Often, turbine engine components are retired from service before “full life” is reached. Among the most
common reasons is accumulated fretting damage in the dovetail slots of the disks. This fretting damage is very
difficult to characterize and analyze. As such, prudence often dictates that the components be removed from service
before their full design life. Due to the long lead times and the high costs associated with replacing this hardware, it
would be desirable to have a comprehensive set of tools to avoid, minimize sensitivity to, or repair fretting damage.
This package of tools will likely include a number of elements including new design approaches to minimize contact
stresses, coating systems to minimize fretting damage, and surface treatments to mitigate the effects of any fretting

damage.

" Corresponding author: michael.shepard@wpafb.af mil Air Force Research Laboratory, 2230 Tenth St., Suite I,
WPAFB, OH 45433-7817




Shot peening, the most common surface treatment, has long been used to increase fretting fatigue
performance. [1,2] More recently it has been demonstrated that other surface treatment approaches, such as laser
shock processing (LSP) can have a beneficial effect on fretting fatigue performance. [3] The improvement in fretting
fatigue performance is due to the in-depth compressive residual stress field and perhaps, in the case of shot peening,
the associated work hardening. The purpose of the current effort is to investigate the feasibility of using a third
process, low plasticity bumishing (LPB), to improve fretting fatigue performance.

LPB is essentially an advanced CNC controlled burnishing process, a detailed description of the process
and other applications of the process can be found elsewhere. [4-7] LPB can be used to induce deep, high magnitude
compressive residual stresses in metallic systems and may provide an affordable, high performance process for
fretting fatigue enhancement.

It is proposed that the principal mechanism for fretting fatigue improvement due to component surface
treatments is the retardation of fatigue crack growth due to the compressive residual stresses. The contact stresses
associated with the disk-dovetail configurations can potentially be well above the yield stress of the material. These
contact stresses diminish rapidly with increasing depth, however. As such, in the worst-case scenario it is useful to
consider the surface material largely “sacrificial.” The applied contact stresses can be sufficiently high that the
nucleation and growth of fretting fatigue cracks is unavoidable. These small cracks are initially driven by a
combination of the contact stresses and the bulk stresses. As the contact stresses diminish with increasing crack
length {depth), the driving force for crack growth becomes the bulk stress. In an untreated component, or one where
the surface treatment produces only a shallow compressive residual stress, the crack may be beyond the fatigue crack
growth threshold stress intensity factor range and the crack might continue to grow to failure. In a component with a
deeper compressive residual stress field, such as those generated by LSP or LPB, the compressive residual stresses
may act to arrest or significantly retard the growth of the fatigue crack once it is driven primarily by the bulk stresses.
1. Experimental procedures
2.1 Specimen preparation

Specimens for the experimental program were excised from two mill-annealed Ti-6A1-4V plates produced
as per AMS 491 1H. Material chemistry and average mechanical properties for each of the plates are summarized in

Table 1.



A thick section, 4-point bend fatigue sample with a trapezoidal gage cross section was used for the fretting
fatigue testing. The trapezoidal cross section HCF sample was designed specifically for testing component surface
treatments. This specimen design is extremely useful since it forces fatigue failures to initiate in the gage section
even though the residual stresses due to surface treatment are highly compressive.

For the specimens subjected to LPB and shot peening, the entire gage section was treated. LPB parameters
were optimized by Surface Enhancement Technologies, LLC to maximize the magnitude and depth of the
compressive residual stresses, while minimizing cold work. Figure | depicts the LPB process being applied to a
batch of specimens similar to those used in this study. Specimens subjected to shot peening were peened to a 6-8A
Almen intensity, 125% coverage, with CCW 14 shot. This level of shot peening is representative of that used for Ti-
6Al-4V engine hardware.

For the “stress-free” electropolished baseline, nominally 0.003 in. of material was removed from the surface
of the fatigue specimen gage. X-ray diffraction residual stress measurements were made on a portion of the samples
to verify that negligible residual stress and cold working existed after electro polishing.

Specimens were thermally treated to simulate elevated temperature exposure under engine operating
conditions. Isothermal exposures were conducted in lab air. Exposures were at 375C for 10 hours, followed by an air
cool. This temperature is representative of a very aggressive use temperature for Ti-6Al-4V.

2.2 Xoray diffraction residual stress and cold work measurement

X-ray diffraction residual stress measurements were made at the surface and at several depths below the
surface on LPB and shot peened fatigue specimens. Measurements were made before and after the 375C/10 hr.
thermal exposure to determine the degree of stress relaxation. Reported stresses are for the residual stress component
oriented parallel to the longitudinal axis of the specimen.

X-ray diffraction residual stress measurements were made employing a sin‘y technique and the diffraction
of copper Kal radiation from the (21.3) planes of the Ti-6A1-4V. It was first verified that the lattice spacing was a
linear function of sin*y as required for the plane stress linear elastic residual stress model. [8-11]

Material was removed electrolytically for subsurface measurement in order to minimize possible alteration of

the subsurface residual stress distribution as a result of material removal. The residual stress measurements were



corrected for both the penetration of the radiation into the subsurface stress gradient [12] and for stress relaxation
caused by layer removal. [13]

The value of the x-ray elastic constants required to calculate the macroscopic residual stress from the strain
normal to the (21.3) planes of the Ti-6A1-4V were determined in accordance with ASTM E1426-91. [14] Systematic
errors were monitored per ASTM specification E9135,

Measurements of cold work are based on analysis of x-ray diffraction peak broadening. The breadth of the
x-ray diffraction peaks is calibrated empirically by using specimens made from identical material that are deformed
to known levels of cold work. [15]

2.1 High cycle fatigue and fretting fatigue testing

Fretting fatigue testing was conducted under constant amplitude 4-pt. bend loading on a Sonntag SF-1U
fatigue machine. The SF-1U is modified for fretting fatigue testing by clamping a bridge-type fretting device to the
gage section of the fatigue specimen using an instrumented loading ring clamp, similar to the apparatus described by
Frost, Marsh, and Pook [16]. A photo of the fatigue te;st setup is shown in Figure 2.

The fretting bridge contains two 0.25 in. diameter Ti-6Al-4V cylindrical pins, nominally 0.5 in. apart,
yielding a cylinder-on-flat contact geometry. The cylindrical pins were not surface treated. The contact geometry was
not selected to be representative of any particular engine geometry. The intent was to generate a significant debit in
fatigue performance due to contact damage. A photograph of the assembled fretting fatigue fixture is shown in
Figure 3.

All testing was conducted at ambient temperature (~22C) at 30Hz with an applied stress ratio R = 0.1. Prior
to the start of each test, a 667 N normal load was placed on the loading ring for the fretting bridge. Tests were
conducted to specimen fracture or a “run-out” life of 2.5 X 10° cycles. Run-out specimens were subsequently fatigue
“re-tested” to fracture at 140 MPa or greater maximum applied stress above the run-out stress. Run-out samples were
re-loaded without disturbing the fretting bridge by simply increasing the load and restarting the fatigue test.

2.4 Surface roughness measurement

The surface roughness values were obtained using a Mitutoyo SJ-201 Surface Roughness Tester. The Ra

surface roughness, defined as the arithmetic mean of the absolute values of the profile deviations from the mean line,

was calculated over a 3.8] mm evaluation length perpendicular to the specimen axis and aver a 12, 7mm evaluation



length parallel to the specimen axis. A measurement performed on a 116 pin standard resulted in a value of 116.1
Hin.
2.5 Fractography

Following fatigue testing, each specimen was examined optically at magnifications up to 60X to identify
fatigue origins and locations thereof relative to the specimen geometry. Pictures were taken with a Nikon 990 digital
camera through a Nikon Stereoscopic microscope at 15x. A representative photograph of a typical failure for each
specimen group was obtained. A few selected specimens were also examined under a Hitachi $500 SEM equipped
with EDAX.

3. Results and discussion
3.1 Residual stresses and thermal stability

The residual stress distributions measured as functions of depth are shown graphically in Figures 4 through 6.
Compressive stresses are shown as negative values, tensile as positive, in units of ksi (10° psi) and MPa (10° N/m?).
Figures 4-6 show the residual stress (RS5) and % cold work (CW) profiles for specimens subjected to low stress
grinding (LSG) and buffing, shot peening (SP) and low plasticity burnishing (LPB) treatments. RS and CW profiles
of a specimen finished with a buffing wheel are included for the sake of baseline comparison. For SP and LPB
conditions, the effect of prolonged exposure to an elevated temperature of 375C for 10hrs was also studied. This
temperature was selected to simulate very aggressive engine operating conditions.

Figure 4 shows the RS and CW profiles of the specimen surface after a low stress grind (LSG) and buffing
treatment. The surface is in compression at —400 MPa with cold work of about 3.5%. The compression drops off to
near zero within the first 25 um., and the %CW drops off to zero within the first 8um. depth.

Figure 5 shows the RS and CW profiles for a shot peened surface. The SP surface compression is nominally -
750 MPa, and drops off to zero somewhat erratically over a depth of about 175 pm. Upon thermal exposure to 375C for
10 hrs, the surface compression drastically changes to nominally —100 MPa, as has been observed repeatedly for highly
cold worked Ti and Ni alloys. Maximum subsurface compression of nominally —550 MPa occurs at a depth of 100 pm.,
and drops off to zero at a depth of nominally 175 um. Correspondingly, %CW is a little over 65% on the surface,

dropping off to zero at a depth of about 75 pm. The high surface %CW decreases to 35% upon thermal exposure.



The RS and CW profiles for LPB treated surface are shown in Figure 6. Surface compression is nominally -
240 MPa. Maximum compression of ~ -725 MPa occurs at a depth of ~ 250 um., and drops off to zero at a depth of
over 1000 pm. Upon thermal exposure to 375C for 10 hrs, the surface RS changes to about —140 MPa, but the
subsurface maximum remains nearly constant at ~ — 700 MPa, and the depth is unaffected. Correspondingly, %CW
is a little under 30% on the surface, and drops off to less than 5% at a depth of about 50 pm., and then gradually to
zero at ~ 375 pum. The initial level of surface cold work is probably attributable largely to prior LSG preparation of
the surface. The surface %CW decreases to 15% upon thermal exposure.
3.2 Surface roughness

Surface roughness of LPB, electropolished, and Shot Peened surfaces are shown in Figure 7. A
representative bar chart of the average surface roughness for LPB, baseline (electropolished - ELP), and shot peened
surfaces are shown in Figure 7. The baseline electropolished samples had surface roughness values in the 15 to 20
pin range. The surface roughness was less than 5 pin for the LPB processed samples. This is considerably lower
roughness than the surface produced by the shot peening operation, with surface roughness ranging from 80 to 100
uin., this surface was the roughest in the study.
3.3 Fatigue and freiting fatigue

The HCF and fretting fatigue tests are presented graphically as S-N curves in Figures 8 and 9. The data are
shown in a semi-log plot of maximum stress in units of ksi (107 psi) and MPa vs. cycles to failure. Figure 8 contains the
high cycle fatigue data (no-fretting) for the LPB'd, shot peened and electropolished specimens. The beneficial effects of
both SP and LPB treatments are apparent. LPB clearly outperforms SP in the high stress, the finite life regime, where
crack propagation is expected to dominate total life. This is likely due to crack growth retardation from the deeper
compressive residual stresses associated with LPB. In the lower stress, longer life regime, where life is dominated by
crack initiation, both SP and LPB showed similar HCF performance. For the ELP'd and 5P'd specimens all observed
failures originated from surface initiated cracks.

In the LPB treated specimens sub-surface initiation sites were the mode of failure. Initiation was invariably
below the compressive residual stress layer near the sharp commers of the thick section fatigue specimens. Two
reasons exist for this failure mode. First, the specimen surface, which is the usual fatigue crack initiation site, is

considerably improved in terms of both surface finish and residual stress state. Secondly, subsurface residual stresses



must eventually transition to compensatory tension to equilibrate the nearer surface compressive residual stresses
generated by the LPB process. These compensatory tensile stresses, in conjunction with the applied stresses, now act
as the predominant failure driver. It should be emphasized, however, that even though subsurface initiation was
predominant in the LPB°d specimens, their performance was at least equal to that of shot peened specimens, and in
the finite life regime, was considerably better. These results, however, emphasize the potential importance of
compensatory tensile stresses in the failure mechanisms of surface treated specimens and components,

Figure 9 contains the fretting fatigue data for the LPB'd, SP’d and electropolished (ELP) specimens, The
benefits of surface treatment, particularly LPB, for this fretting configuration are clear. In the baseline condition, fretting
damage has dropped the 2.5 X 10° cycle fatigue strength from nominally 500 MPa max stress to nominally 175 MPa
max stress, and the fatigue life at all stress levels is drastically reduced. A typical fracture surface for the ELP
condition, with multiple initiation sites at the fretting damage is shown in Figure 10. In the case of the SP treated
specimens, the 2.5 X 10° cycle fatigue strength decreased from nominally 575 MPa to 450 MPa, and similar to the
baseline condition, at all stress levels the fatigue lives were considerably lower. A typical fracture surface for the
SP'd condition is shown in figure 11. Similar to the ELP'd condition, multiple initiation sites are observed at the
fretting damage. All initiation sites for the baseline and SP'd condition were observed to be associated with fretting
damage.

The performance of the LPB’d specimens subjected to fretting damage was largely identical to the
performance without fretting damage. This is further born out by the fact that, as with the high cycle fatigue testing
discussed earlier, all of the failure initiation sites in the LPB processed specimens were subsurface. Failures did not
originate from the fretting damaged regions in the LPB'd specimens. This mitigation of the fretting fatigue damage
by LPB is depicted more clearly in Figure 12, A typical fracture surface for the LPB’d + fretting condition is shown
in Figure 13. Mote that the initiation site is subsurface and occurred on a plane remote from the fretting fatigue
damage.

This fracture behavior suggests that the deep, high magnitude compressive residual stresses induced by LPB
have prevented any critical crack growth from the fretting scars. In this way, the LPB induced compressive residual

stresses have largely eliminated the debit in high cycle fatigue performance from fretting damage.



4. Conclusions

The subject study has demonstrated the benefits of shot peening and particularly, low plasticity burnishing
on Ti-6A1-4V specimens in a fretting fatigue environment. While both surface treatments provided a clear benefit
over the baseline condition, the performance of LPB treated specimens was superior. While some of this
enhancement may be attributable to the enhanced surface finish, the deeper, more thermally stable compressive

residual stresses associated with the LPB treated specimens are believed to be the main factor,



Figures
Table 1

Material chemistry and mechanical properties of Ti-6Al-4V alloy used in this study:
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Figure 1. LPB Processing of the thick section fatigue specimen in the four-axis manipulator on the CNC milling machine



Figure 3. Fretting fixture with instrumented loading ring and bridge device to hold two fretting cylindrical pins
clamped on to the fatigue specimen surface under a controlled normal force.
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Figure 10. Low magnification optical fractograph of ELP treated specimen. Failure occurred from initiated cracks
under the fretting scars. Mote the dark band near the surface indicative of the fretting damage zone leading to
multiple crack initiation sites. (ELP+Thermal+Fret Specimen 82, Smax=50 ksi, and Nf=91,814)
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7

Figure 11. Low magnification optical fractograph of SP treated specimen. Failure occurred from initiated cracks
under the fretting scars. Note the dark band near the surface indicative of the fretting damage zone leading to a crack
initiation site. (SP+Thermal+Fret Specimen 76, Smax=95 ksi, and Nf=111,093)
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performance and the endurance limit is minimal
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Figure 13. Low magnification optical fractograph of LPB treated specimen. Failure initiated subsurface, on a plane
away from the fretting pads. with no regard for the fretting scars. (LPB+Thermal Specimen 6, Smax=85 kst, and
Nf=1,303,823)
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